Space Radiation Shielding Technology Workshop

An Overview

John W. Wilson

NASA Langley Research Center

F. A. Cucinotta

NASA Johnson Space Center

J. Miller

DOE Lawrence Berkeley Laboratory

Brief History of Space Radiation Shielding Technology

• 1960's: the Apollo program

- Protection requirements for Solar particle event (SPE) from biology
- Radiation physics applied to meet requirements
- Physicist meets the biologist

• 1970's: increased concern for long-term exposures

- Skylab LEO exposures and late biological effects
- Growing awareness of potential injury by galactic cosmic rays (GCR)
- Track structure of high charge and energy (HZE) ions affecting biology
- Target fragmentation events in biological tissues
- Biologist meets the physicist

• 1980's is a period of growth in biology and radiation physics

- Transition to biomolecular basis for space radiation biology
- Integration of physics and biomolecular models
- Physicist and biologist work integrated tasks

Brief History of Space Radiation Shielding Technology A parallel universe

• 1960's: the Apollo program

- Protection requirements for Solar particle event (SPE) from biology
- Radiation shielding affects design and operations
- Engineer meets the physicist

• 1970's to 1980's: increased concern for long-term exposures

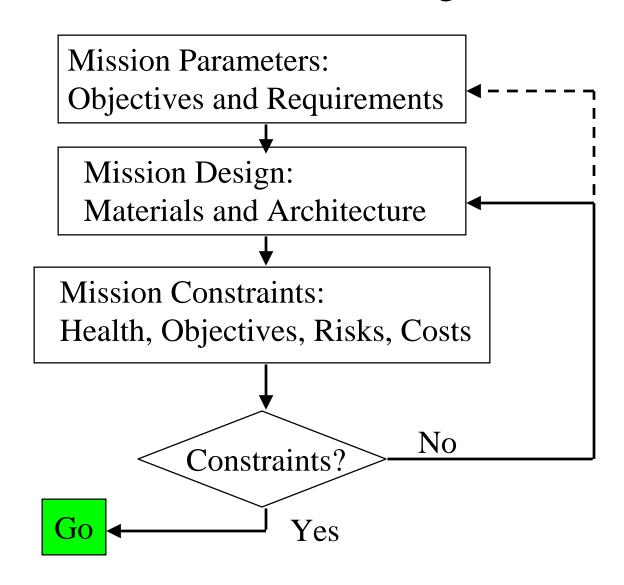
- Skylab LEO and deep space long-term exposures
- Cell lethality in HZE exposures raises concerns for shielding
- GCR shielding identified as major impact on design processes
- Physicist meets the engineer

• 1990's is a period of growth in engineering and radiation physics

- Transition to integrated engineering design processes
- Multidisciplinary-multifunctional design optimization
- Non-local engineering environments for design collaboration
- Physicist and engineers begin to work integrated tasks (faster, better, cheaper)

1995 JSC Workshop: Shielding Strategies for Human Space Exploration

- 25 percent of participants were engineers with no prior radiation related experiences
- Emphasis on engineering design processes and requirements
- Clear need for an integrated approach to design was indicated
- Traditional radiation physics and radiation biology were still a major part of the issues addressed
- Recommendations were in two sections:
 - Radiation physics issues
 - Engineering design related issues
- A greater collaboration between radiation physicists and the engineering community has been the result

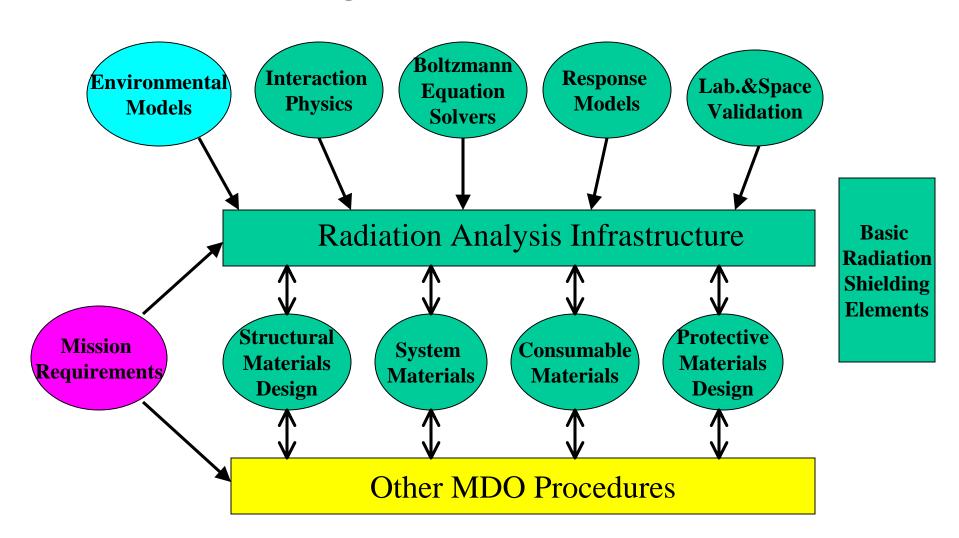

1995 JSC Workshop: Shielding Strategies for Human Space Exploration plus

An Approach to Radiation Shield Design

- Large fraction of radiation protection comes from basic structure and onboard equipment
- Multifunctional materials can be chosen to serve as efficient shield materials and other functional purposes
 - Noise abatement using polymer fibers or open cell polymer foams
 - Material choices and equipment arrangement can be optimized to reduce parasitic shielding requirements
 - Composite structures can be developed to incorporate highly efficient shielding material into the design
- Requires an integrated approach for the design process

1995 JSC Workshop: Shielding Strategies for Human Space Exploration

Integrated Radiation Shield Design Process


Integrated Design Technology Requirements

- Environmental models, interaction physics, transport processes, material properties
- Materials database development and validation
- Subsystems technology development and validation
- Design tools and validation
- High-speed computational procedures and optimization methods
- Multifunctional subsystems and databases
- Collaborative Engineering and Multidisciplinary Optimization (MDO) Methods

The intention of this workshop is to address mainly the last items (green)

A modern engineering view

MDO Paradigm for Radiation Constraints

Integrated Systems of Multifunctional Materials to Lower Cost of Radiation Protection in the 21st Century

Multidisciplinary Teams
Using Networked
Methods for Component
and Subassembly
Check-in & Verification

Networked Analysis Tools & On-the-fly Model Building

Model generation for multifunctional analysis and optimization

High fidelity human geometry and radiation response models

Immersive simulations

3D visualization tools for analysis and redesign

Immersive Audio/Visual/Collaborative simulation for rapid design optimization and crew training including Radiation Level, Acoustics, Structures, Thermal control, Aerothermal, etc.

Design prospectus:

- High-fidelity computational models
- High-speed computational procedures
- Multifunctional materials database
- High-fidelity human response models
- High-reliability design methods
- Visualization of optimization pathways
- Rapid design reconfiguration processes
- Revolutionary multifunctional materials
 - Nanofibers for energy storage
 - Aliphatic/aromatic hybrid polymers
 - Self-healing polymeric systems
 - etc